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An energy-transport model is rigorously derived from the Boltzmann transport 
equation of semiconductors under the hypothesis that the energy gain or loss of 
the electrons by the phonon collisions is weak. Retaining at leading order 
electron-electron collisions and elastic collisions (i.e., impurity scattering and 
the "elastic part" of phonon collisions), a rigorous diffusion limit of the 
Boltzmann equation can be carried over, which leads to a set of diffusion equa- 
tions for the electron density and temperature. The derivation is given in both 
the degenerate and nondegenerate cases. 

KEY WORDS: Semiconductors; kinetic equations; Boltzmann transport 
equation; degenerate gases; Fermi-Dirac statistics; diffusion approximation; 
drift-diffusion model; energy transport; hydrodynamic model; Hilbert expan- 
sion; Chapman-Enskog expansion. 

1. I N T R O D U C T I O N  

This paper is concerned with the rigorous derivation of an energy-transport 
model for semiconductors from a suitable diffusion approximation of the 
Boltzmann transport equation. We first consider a Boltzmann equation in 
which electron-electron collisions as well as impurity or phonon collisions 
are incorporated. Then by noting that in typical hot-electron situations, the 
relative energy g~iin or loss c~ 2 of the electrons during a phonon collision is 
small (i.e., ~2~ 1), the phonon collision operator is expanded in powers of 
~2. The leading-order term of the expansion is an elastic collision operator 
which can be combined with the impurity collision operator. Thus, the 
leading-order collision operator is the sum of the electron-electron collision 
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operator and of an elastic collision operator. Its equilibrium solutions are 
Fermi-Dirac or Maxwelliam distributions with arbitrary electron density 
and temperature, but with zero mean velocity. 

The diffusion limit of this Boltzmann equation consists in looking at 
a space scale of the order of 1/~ times the kinetic space scale (i.e., the mean 
free path), while the time scale is I/~ ~- times the kinetic time scale (i.e., the 
collision time). This results in a singularly perturbed Boltzmann equation, 
which can be investigated by the diffusion-approximation procedure. Its 
solution (formally) converges to a Fermi-Dirac (or Maxwellian) distribu- 
tion function with time- and space-dependent density and temperature. The 
density and temperature satisfy a set of drift-diffusion equations, the coef- 
ficients of which are rigorously derived from the linearized collision 
operators. These coefficients appear to be the mobility, heat conductivity, 
and thermopower coefficients and coincide with the transport coefficients 
that can be found in the literature. ~9" Jg~ This extended drift-diffusion model 
can be interpreted as a hydrodynamic model in which the terms involving 
the electron mass in the momentum transport equation have been dropped. 

The usual drift-diffusion model only involves an evolution equation for 
the density. ~29~ Its derivation from the Boltzmann equation through the 
diffusion approximation is treated in many references ~26 Jo~ and mathemati- 
cally explored in refs. 23, 24, and 15. The hydrodynamic model of semi- 
conductors was first proposed in ref. 7 based on a moment expansion of the 
distribution function f and closure relations which rely on the perfect-gas 
equation of state with a heat conductivity term added. Phenomenological 
relations are used for the momentum and energy relaxation times. The use 
of the Wiedemann-Franz law for the heat conductivity first appears in 
ref. 5. Different closure relations are proposed in ref. 4 (where the distribu- 
tion function is supposed spherically symmetric) or in ref. 18 (where a per- 
turbation in the direction of the field is added to a spherically symmetric 
Ansatz). An incredible amount of numerical work has been devoted to the 
solution of the hydrodynamic model and we refer the reader to the biblio- 
graphy in the above-quoted references. 

In most of the real application cases of the hydrodynamic model, the 
convective terms in the momentum transport equation are neglected and 
the obtained systems are often called "energy-transport models." The first 
derivation of an energy-transport model from the Boltzmann equation can 
be found in ref. 28, under the simplifying assumption that the elastic colli- 
sions can be described by an energy-dependent relaxation time. Similar 
derivations can also be found in refs. 9 and 19. Other derivations are 
instead based on phenomenological closure relations. This is in particular 
the case of the recent work by Rudan e t  al . ,  ~27~ where an extension of the 
energy-transport models for arbitrary band structures is performed. 
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Despite their unquestionable success, these approaches suffer from the 
lack of a sufficiently general theory supporting the various choices of' 
closure relations that are made. Our approach tries to fill this gap by 
proposing a rigorous closure of the energy-transport model deduced from 
the Boltzmann equation. Our framework handles general energy band 
models and degenerate as well as nondegenerate statistics. It highlights the 
hypotheses and properties that the collision operators need to fulfill in 
order for this approach to be valid. The relation between the hydro- 
dynamic and energy-transport models is also clarified. Note a previous 
attempt to derive directly the hydrodynamic model in ref. 24, based on a 
high-field drift-diffusion approximation, but this model leads to a somehow 
nonstandard equation of state. 

An intermediate approach between the Boltzmann equation and 
the hydrodynamic or energy-transport models is the spherical harmonic 
expansion method (see refs. 14 and 31 and references therein). This 
approach has been put in the diffusion approximation formalism in ref. 13 
under the hypothesis that the relative energy gain or loss of an electron 
during a phonon collision is very small. We shall use the same hypothesis, 
with the difference that we consider the electron-electron collision operator 
to be of the same (leading) order as the elastic collision operator. A 
somehow similar appraoch to ref. 13 has been applied in refs. 21 and 22, 
using as leading-order collision operator the optical phonon scattering. In 
ref. 30 a moment expansion of the spherical harmonic model of ref. 31 or 
ref. 13 leads to an energy-transport model with a diagonal diffusion matrix, 
but the moment expansion closure follows from phenomenological 
considerations. 

Other recently introduced intermediate models are the higher order 
moment models, which consider additional evolution equations for the heat 
flux, stress tensor deviator, etc. Besides the classical approach, ~j6"~7~ the 
closure relations which have been investigated in semiconductor models 
issue from the extended thermodynamics theory ~'2~ and can be related to 
the recent models developed for gas dynamics in ref. 20. 

This paper is organized as follows: Section 2 gives the setting of the 
problem, while Section 3 introduces the expansion of the phonon collision 
operator with respect to the parameter ~. In Section 4, we perform the 
diffusion approximation by using a Hilbert expansion. The connection 
between the resulting drift-diffusion system in (17, T) and the usual hydro- 
dynamic equation is shown in Section 5. Up to this point, the analysis is 
carried through in the framework of a degenerate electron gas with an 
arbitrary band structure. The case of a nondegenerate electron gas with a 
parabolic band structure (which is a simplification usually assumed in most 
semiconductor models) is dealt with in Section 6. 
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A rigorous proof of the convergence of the Hilbert expansion is far 
beyond the scope of this paper. For a mathematical proof of convergence 
in a linearized framework, we refer to ref. 6. A proof in the nonlinear case 
is in progress. Finally, a similar model can be derived for electrons in a 
plasma.~,, 

2. BOLTZMANN EQUATION FOR DEGENERATE ELECTRON 
GAS IN A SEMICONDUCTOR 

We consider the electron distribution function f (x ,  k, t) of electrons in 
the conduction band of a semiconductor. For  the sake of simplicity, we 
shall not consider boundary conditions and let the position variable x 
belong to E3. The pseudo wavevector k belongs to the Brillouin zone B 
associated with the underlying crystal latticeJ 3~ Since B is the elementary 
cell of the dual lattice L*, it will be identified with the three-dimensional 
torus -[1-3= R3/D_ * ~ B. Here, f like any other function o f k  appearing in this 
paper, will be identified with the periodic function on R 3 with period 0_*, 
in an obvious way. The equations of motion of the individual electrons in 
an electric potential V(x) are given in the semiclassical picture by c3~ 

1 q 
x- = ~ Vke(k), k =~ -  V,. V(x) (2.1) 

where (x(t), k(t)) is the electron trajectory in phase space, h is the reduced 
Planck constant, q is the positive elementary charge, and e is the kinetic 
energy. 

For an ensemble of electrons subject to collisions with lattice defects 
or to binary collisions, the Boltzmann transport equation governs the 
evolution of the distribution function f according tO t9) 

~ + ~  V k e ( k ) . O f  1 V"f+h V"V(x't) . Vk/'=QId(f)+Q,,(f), (2.2) 

where Q~d(f) stands for the collision operator modeling lattice-defect colli- 
sions and Q,.(f) stands for electron-electron binary collisions. 

The two main classes of lattice defects that we shall consider are 
impurities and phonons, ~3~ 

Qid(f) = Qimp(f)+ Qo, ( f )  (2.3) 



Energy-Transport Model for Semiconductors 209 

Because of the elastic character of impurity scattering, Pauli's exclusion 
terms in the gain and loss terms cancel and we get 

Qim"(f)(k) = f8 ~bimp(k' k') 6 ( e ' - e ) ( f ' -  f )  dk' (2.4) 

where e=e(k),  e '=e(k') ,  f = f ( k ) ,  f '  =f(k ' ) ,  ~5 is the delta measure, and 
the dependence on x and t of both f and Qimp(f) have been omitted, to 
stress the fact that the collision operator operates only on the k variable. 
Fina l ly ,  t~imp(k, k') = t~imp(k' , k). 

For the sake of simplicity, we shall consider only one electron-phonon 
collision operator, but the analysis can be straightforwardly extended to a 
sum of such operators. Therefore, we consider, with the same notations as 
for (2.4), 125~ 

Q'h('/')(k) =]e  CPl'(k' k') 

x { [(Nvl , + 1) 6(e - e '  +%,,) + N p h 6 ( g - -  ~3' --  Epl,)],/"( 1 --9/') 

-- [ (Nph  + 1) &(t ' -  e + tvi,) + Nph6~(~'-- t~--  t;ph)] f (  | --f ' )}  dk' 
(2.5) 

where again r k ' )= Cph(k', k), %h is the phonon energy, and Np~ is 
the phonon occupation number given by the Bose-Einstein statistics 

Nph = ( e ~ph/k~rL -- 1 ) - l  (2.6) 

where TL is the lattice temperature and ku is the Boltzmann constant. In 
gene ra l ,  8ph is a function of k--k' .  

Finally, the electron-electron binary collision integral is considered in 
ref. 25 for nondegenerate gases and non-umklapp processes. Its exten- 
sion to degenerate gases and the allowance of umklapp processes in the 
scattering lead fo 

Q,.(f)(k) 

=f~3 r k', k~, k'~) 6(a' +a'~ - s - e ~ )  6p(k' +k'j - k  - k , )  

x [f 'f ' , (  1 - f ) ( 1  - f ,  ) - f f , ( 1  - f '  )(1 -./", )] dk, dk' dk', (2.7) 
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where the delta function 6 p ( k ' + k ' l - k - k l )  is to be understood as 
periodized, which means that its support is 

Supp 6p(k' +k'j - k - k 1 )  

={(k,  k l , k ' , k ' , ) ~ B 4 , 3 g ~ L * , k + k ~ - k ' - k ' ~ = g }  (2.8) 

Obviously, g = 0 stands for a non-umklapp process, while g-~ 0 implies an 
umklapp process. Note that the number of g's involved in (2.8) is finite. 
Owing to the indistinguishability of the particles and to the detailed- 
balance property, ~,, satisfies 

�9 ,.(k,k',k,,k',)=C~,.(k',k,k,,k',)=C~,.(k~,k',,k,k') (2.9) 

In all these equations, the normalizing factors 1/4~ 3 coming from the 
momentum density of states have been transferred to the qS's, and will be 
ignored in the remainder of the paper. The potential V(x) is coupled with 
f v i a  the Poisson equation. This point will not have any effect on the subse- 
quent analysis and will be ignored. 

3. EXPANSION OF THE PHONON COLLISION OPERATOR 

We now introduce a set of units from which an appropriate scaling of 
Eq. (2.2) will be derived. Let n o and To be the typical density and tem- 
perature, respectively of the electron gas in the semiconductor. Since we 
have in mind the derivation of a macroscopic model suitable for high-field 
or hot-electron transport, we choose kBTo/q of the order of the applied 
voltage V,4, while no can be larger than the doping density if high injection 
effects are to be expected. A time scale t o will be specified later. 

Let Ft,,r(k) be the Fermi-Dirac distribution function associated with 
the chemical potential p and temperature T: 

Fl,, r(k) = (e~k~-~,)/kBr + 1 ) -i (3.1) 

and let n(ll, T) and rig(it, T) be the associated density and internal energy, 
respectively, 

n~(p, T)J B 8(k) 4~ 3 (3.2) 

We specify units for the chemical potential/to and the internal energy go 
such that 

n(/zo, To) = 17o, no~(lr To) = noa~o (3.3) 
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holds. The kinetic energy scale/3o is defined according to eo = 280/3. For the 
wavevector scale k o, we choose the "typical" norm of wavevectors k satis- 
fying/3(k) =/3o, The distribution function scale follows immediately, 

47t31lo 
./o = k3 = q  (3.4) 

The dimensionless parameter q measures the level of degeneracy of the 
electron gas, that is, if q ~ 0, a classical nondegenerate statistics applies. 
The velocity scale is given by Vo =/3o/hko, and the space scale Xo is linked 
to the time scale through Xo = Voto. Finally, the potential scale V o is con- 
nected with the energy scale/30 by q V o =/30. 

In a parabolic band model dk)=h ' - k2 /2m, ,  where m ,  is the effective 
mass, and if the relations (3.2) can be approximated by a Boltzmann 
statistics with B = I~ 3, we get 

ito = k n To ln ( x/-2 n3/2 n~ 
kU 

k ~  h 2 \ m ,  / 

n o l o  = 3 = kB To nok~ To, eo 

]/2 

(3.5) 

(3.6) 

(3.7) 

Vo=kBTo/q  (3.8) 

It is important to note that the potential scale V o is a thermal poten- 
tial, not associated with the lattice temperature TL, but with the typical 
electron temperature To. In view of the introduction to the present section, 
one would choose V o= VA, that is, the applied voltage. Therefore, the 
forthcoming macroscopic limit will be valid for large applied potential 
differences. 

To scale the collision operators, we introduce dimensionless numbers 
~)imp.0, f~)ph,O, and q~e,o, which are "typical values" of the transition rates 
qSimp(k , k ' ) ,  ~bpla~k , k ' ) ,  and ~,,(k, kl ,  k', k~]), respectively. We introduce the 
following dimensionless parameters: 

tPirnp.okg qSph,0 k3 
I"imp - -  to, Vph = to (3.9) 

/30 /30 

~,,.o4~311o k3 
v,, - to (3.10) 

~o 
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Yimp, Itph, and v,, are measures of the collision frequencies in units of t ol.  
Let also t~ph, o be the order of magnitude of the phonon energy and intro- 
duce the dimensionless parameters 

0(2 _~ph.0 f12 eph. 0 (3 .11)  
eo ' - kB TL 

where the lattice temperature TL is supposed constant, although this 
assumption can be easily waived. 0~ is a measure of the inelasticity of 
phonon collisions acting on a "hot" electron of energy k s  T o, while fl is a 
similar measure, but for "thermal" electrons of energy kB TL. The present 
paper is concerned with the ordering 

~2 ~ 1, f12=O(1) (3.12) 

In this case, the electrons are considered so hot that the energy loss per 
phonon collision is a small fraction of their total energy. A similar fact 
applies in a plasma for collisions against ions. ~1L~21 

We perform a change of variables and unknowns 

t = t o L  X = X o s  k=kof~,  f =fof , . . .  (3.13) 

which leads to the following Boltzmann equation (the bars are omitted for 
the sake of simplicity): 

of 
+ V,e(k). V.,f+ V.,. v. % f  = Qimp(f) + Qph(f) + Q,,(f) (3.14) 

with 

Qin, p(f) = vireo f8 qOimp(k' k')  6(e' - e ) ( f ' - f )  dk' (3.15) 

r  
Q p d f )  = Vph JB qSph(k' k') 

X { [ ( N ph  + 1) ~(e--~; '  d- 0~2~ph) 

q- Nph t~(8 -- 8' --  ~X2eph) ] f ' (  1 -- lif e) 

-- [(Nph + 1) d ( e ' -  e + 0~2%h) 

+ Nph 6(e' -- e -- a=%h ) ] f (  1 -- q f '  ) } dk' (3.16) 
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with 

/ .  

Q,,(f) = ve | ~e(k, k', kl ,  k'l ) JB 3 

x~(e' +e'l --e--el) ~p(k' +k'l - k - k 1 )  

• [ f T , ( 1  - ~ ) ( 1  - ~ 1 )  

- f A ( 1  - ~ ' ) ( 1  - ~ ' 1 ) ]  dk, rig' dk'l (3.17) 

1 
Nph ep2,p,_, (3.18) 

and B is the original Brillouin zone dilated by the factor k o ' .  
Six dimensionless parameters are thus involved in this model: t/, ct 2, f12, 

V~mo, Vph, and v e. Table I gives the numerical values of these parameters for 
silicon and gallium arsenide when the typical electron temperature is 1 e V, 
the lattice temperature is 300 K, and the typical electron density no is 1022 or 
1024 m -3. The numerical parameters are taken from ref. 25. For e2 and f12, 
the value of the optical phonon energy has been taken. Vimp is evaluated from 
(3.9) with k 0 given by (3.6). It is very small because of the very rapid falloff 
of the impurity scattering cross section as the electron energy increases. 
Therefore Qimp can be neglected for the subsequent analysis. Vph is evaluated 
for the A-A intervalley scattering in silicon, and the L-L or L-For A-Finter-  
valley scattering in GaAs, for which the coupling constants are the largest 
ones among the various phonon scattering mchanisms. For re, the value of 
(3.10) varies dramatically according to the value of(k, k l, k', k'l) at which ~e 
is evaluated. We have indicated a range which corresponds to values from 
Ik-k'[  = 2 ~ '  to Ik-k ' l  =ko,  where 2D is the screening length. Electron- 
electron collisions can be extremely strong for small relative wavevectors, and 
there is a whole range of values of relative wavevectors for which the inter- 
action is stronger and takes over the electron-phonon collision. 

Table I. Dimensionless Parameters (To= 1 eV, Tt=300 K) 

Si GaAs 

no=1022m -3 no=  1024m -3 no= 1022m -3 no= 1024m -3 

~12 3 x 10 - s  3 x 10 -3 10 -3 10 - I  
ct 2 7 x 10 -2 4 x 10 -2 

fl-" 2.4 1.4 
l'irnp (sec - I )  106 108 107 109 
%h ( s e c - ' )  1012 1012 
% ( s e c - ' )  1 0 6 4  1017 108---~ 10 ~5 106--~ 1017 108~  1015 

822/84/1-2-14 
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From the previous analysis we can choose the time scale t o such that 
v~mp= Vph= V,,= 1, possibly by sending some constants inside the qS's. 
Although V~mp was shown to be very small, it does not change the 
forthcoming study to keep it in the order-1 terms. 

Now, by formally expanding the phonon operator Qp, = Q~h(f) in 
powers of ct 2, we get 

Qph( f ) = Qph, o( f ) + ~'-Q~(J') (3.19) 

where 

Qph,o(f) = JA q~oh(k, k')(2Nph + 1 ) 6(e' - ~)(f' - f )  dk' (3.20) 

and Q~(f) is easily shown to be of order 1 w h e n  ~ ~ O. 

Since Qph,o(f) is an elastic operator, it can be gathered with Qimp by 
defining 

Qo(f) = Qimp(f) + Qph.o(f) 

= f q~o(k, k') 6 ( e ' - e ) ( f ' -  f )  dk' (3.21) 
B 

r k') = r  k ' )  + (2Nph + 1 ) Cph(k,  k') (3.22) 

We now consider a diffusion scaling of Eq. (3.14) in which the scaling 
parameter is ~: 

t' =~zt, x' =ctx (3.23) 

This leads to the following scaled Boltzmann equation: 

Off 1 1 
~- + ~  [Vke(k). V, . f+ V,. V. Vkf] = - -  [ O o ( f ) +  Q,,(f)] + Q~(f) (3.24) 

The remainder of this paper is concerned with the limit of (3.24) when 
(X ""~ 0, 

Here ~ is the scaled mean fi'ee path, while ~-' is the scaled mean time 
between collisions, in the new set of dilated space and time units. Since no 
rescaling of the potential has been done, this analysis allows typical values 
of the electric field equal to the applied bias VA divided by the macroscopic 
distance. By comparison, the standard drift-diffusion model is valid for 
typical fields equal to the thermal voltage UrL=kBTL/q associated with 
the lattice temperature T L divided by the macroscopic distance. Since 
UrL< VA, our analysis sustains much larger fields than the usual drift- 
diffusion model. 
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4. T H E  D I F F U S I O N  L I M I T  

Let f= be a solution of the Boltzmann equation (3.24). As usual, for 
deriving the diffusion limit, we will perform a Hilbert expansion o f f : .  We 
let 

f~(x, k, t) = f o  + ~f. + ~2f2 + .. .  (4.1) 

Inserting this expansion in the Boltzmann equation (3.24), we find the 
following equations: 

( Q,, + Qo)(fo) = 0 (4.2) 

[DQ<,(fo) + Qo](f,)  = Vk8(k) '  VxJo +- Vx V- VkJ o (4.3) 

0J~, + Vke- V.,.fl + V.,_ V- 7k fl [ D Q < , ( f o ) + Q o ] ( f z ) = ~ 7  . . 

1 
- Qt (Jo) -~D2Q<,( fo ) ( . f , , f , )  (4.4) 

where DQ,,(fo) and D2Q,,(fo) denote the first and second derivatives of Q,, 
with respect to fo- 

4.1.  O r d e r - =  -z  T e r m s  

In order to solve (4.2), we have to study the operator Q,,+ Qo and 
especially to determine the collision invariants. 

Because of umklapp processes, the collision invariants of Q,, are not 
easy to find. We will see below that it is easier to determine those of 

Q<.+ Qo- 

kemma 4.1. We have (i) 

J; 
and (ii) 

Qo(f)  g dk = - ~ f f  4bo(k, k') 6(e' - e ) ( J " - f ) ( g '  - g) dk' dk 

f'r~Ct �9 
Q<<i> g <,k = - ' j j j j  + 

x 6p(k' +k ' l  - k - k , ) [ g ' +  g'j - g -  g~] 

x [ f ' f ' ~ (  1 - , # i ) (  l - J#.f~) - f f , (  l -,7.1") 

x (1 - o f ' , ) ]  d k d k ,  dk' dk', 
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Proof. These formulas are straightforward after noticing that 

r k') = ~0o(k', k) 

Ce(k ,k , , k ' , k ' l )=~, . (k , , k , k ' , k ' , )=~e(k ' , k ' , , k , k~)  I 

C o r o l l a r y  4.2 (H Theorem). We have (i) 

f O o ( f ) H ( f ) d k =  - �89 ~ o O , ( f ' - f ) [ H ( f ' ) -  H ( f ) ]  d2k<<.O 

for every increasing H, where di, stand for 6 ( e ' - e )  and d2k = dk dk'. 

(ii) Let H(f )  = ln(f/1 - r/f); then 

f e,.(:).(:)d/, = - ffff 
• [f~f'l( 1 - r/f)(l  - r / f~) - f f~(1  - rlf')(1 - r/f1)] 

• {In[f ' f f j (1 - r/f)(1 - r/f1)] 

- l n [ f f , ( 1 -  r/7')(1- r/f',)] } d4k~<O 

where ~ and 6,,  respectively, stand for 6 ( e ' + e ' ~ - e - e l )  and 
6p(k' +k'  l - k - k ~ )  and d4k =dk dk~ dk' dk'~. 

Proof. The proof is a simple computation. I 

C o r o l l a r y  4.3. (Collisional invariants): 

(i) I fg=g(e) ,  then I Qo(( f )gdk=O.  

(ii) ~ Q,.(f)(,,~)) dk = O. 

Proof. Again the proof follows directly from Lemma 4.1. II 

P r o p o s i t i o n  4.4. Assume qs,., ~ o >  0; then 

Qo(f) + Q,.(f) = 0 => 3Ix, T 

f(k)=Fl,.r(k): a~d 

Hence ifJo solves (4.2), then fo = F . .  r. 

Proof. 

such that 

1 

,? + exp{ [e(k) --/~]/T} 

According to Corollary 4.2, if Qo(f) + Qe(f) = 0, then 

Qo(f) ~/(f)a~: f Q<.(/) s-s(:) dk = O 

where H(f )  = In[f/( 1 - q f ) ] .  
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This implies that H(f(k'))= H(f(k)) when e(k)=e(k'), which can be 
rewritten 

f = f(e) (4.5) 

The condition ~ Q,,(f) H(f)  dk = 0 implies 

ln[ f ' f '~(1  - ~/f)(1 -qf~)] = ln[ff~(1 - r/f')(1 -qf ' t )]  

when k+k~=k' l+k '  (moduloB)  and e ' + e ' l = e + e ~ ,  which can be 
rewritten 

H(U)+H(f , )=H(f ' )+H(f '~)  when {k+k,=k'+k'~(B)~e,+e,~=e+el j (4.6) 

Now, we claim that for almost every value e in e(B), the set {e(k')}, where 
k' is an outgoing wavevector of a collision with incoming wavevectors k 
and k~ of the same energy e, contains an interval 

[ e -~ ,  ~+~] 

This means that V ~  [-c t~,  ~ ]  there exist k, k~, k', k'~ such that 

e(k)=e(kl)=e, e(k')=e+~, e(k'l)=e-c~, k+k l=k '+k ' l  

Hence we have, as a consequence of (4.6) and from the fact t h a t f i s  a func- 
tion of the energy, that 

2H(f(e))=H(f(e+ct))+H(f(e-ct))  Vet ~ [ - c~ ,  ct,] 

which implies that H(f)  is an affine function of e and ends the proof. II 

4.2. O r d e r - a - 1  T e r m s  

To solve Eq. (4.6), we have to perform the spectral analysis of the 
linearized operator DQe(F) + Qo. 

Proposition 4.5. Let us denote LF= DQe(F); then, for every f ,  we 
have 

LF(f) = f f f  ~,.6kg~F'F'1( 1 - qF)( 1 - qFi) 

x [h' +h', - h  - h , ]  dk, dk' dk', 
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where hF( 1 -- qF) = f ;  and 
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f L F ( f )  g = -- JJJj  ~,.&k&~F'F'j(1 - r/F)(l - q F , )  dk 

x [h'+17' l - h - h , ] [ g '  + g ' t - g - g . ]  d4k 

The p roof  is a simple linearization of  Q,,, where we note that  

; 

x F'F'I( 1 - qF)( 1 --11F1) d3k 

where 

Proof. 

F = ( 1 - , I F ) M  with M ( k ) = e x p ( e ( k ) f - p )  

6 ( e ' + e ' t - e - e l ) M ' M ' l = d ( e ' + e ' l - ~ - e i ) M M i  | 

Let us now introduce the scalar product  

fe dk (4.7) 
( f ' g ) r =  fg  F(1--qF)  

and the associated norm II" ]IF. Let 

H g = t2(O) with the scalar product  ( �9 ) F (4.8) 

Then we have the following result. 

C o r o l l a r y  4.6.  L r and Qo are bounded,  self-adjoint, nonposit ive 
operators  on H r . 

L e m m a  4.7.  The opera tor  s satisfies the following 
properties: 

(i) Ker(s = span(F( 1 -- qF), F( l -- qF) e). 
p -  ", 

(ii) (s f>F>~/~ I I f -  .1 II~-, where P is the or thogonal  projection 
on Ker(Z#F). 

Proof. Proper ty  (i) is the linearized version of Proposi t ion 4.4 and is 
obtained in exactly the same manner.  Now to prove (ii) we can put  LF(f )  
in the form 

f ( u )  du f L~,f  = - vf + I K(u, k) 
an F( 1 liE) 
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and 

=fJ'~,.5(e(u)+e'l e - e , ) 6 r ( u + k ' l - k - k , ) d k ' l d k l  K(u, k) 

+ II ~,.6(e' + e ( u ) - e - e , )  6:(k' + u - k - k l )  dk' dk, 

- I I  ~,.6(g +e', - e - e ( u ) )  67(k' +k', - k - u )  dk' dk,, 

If  e is 
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= 2 I I  q~, .5(e(u)+e(k ' , ) -e(k)-e(k , ) )  6p(u +k', - k - k , )  dk', dk, 

- I I  cb ,.5(e(k') + e(k ' , ) -e(k) -  e(u)) 57(k' + k', - k -  u) dk' dk', 

smooth enough, then v,~>v>~vo>0 and K is in L ~-, and then 
L F= - I~['+ Cf, where C is compact. A consequence of this is that the spec- 
trum Sp(LF) of L F is such that 

Sp(Lr) c {0} u ] - -  c_C, --lt,[ 

and 

This implies that 

with II, > 0 

dim(Ker LF) < 

<-LF.L  .15 >~ /,, lif - P , f l l~  (4.9) 

where P, is the projec}ion on Ker L F. Since Ker LPF=Ker LFC~ Ker Qo, 
then Ker L g-- Ker ~F @3 E. dim E < + or. Let P, f = Pf + g. where g e E, 

P./II F = I I f - -P ,J  +gll~ -=  I I f - P ,  fll ~.-+ IlgllF (4.10) 

< - -~rJ .  f>F = < - - ~ r e , f ,  P , f > r +  < --s  e , f ) ,  ( f - -  P , f ) > r  

- -  2 <  ~QqF P , . f  , J" - -  P , . f  > F 

>i < --&arg, g> r -  2( Sflrg, f - P, f> r 

>1 ( --"~Fg, g> x - c  Hgllr Nf - P l f l l g  
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Now since ( -  &erg, g)F > 0 when g 4:0 and g lies in a finite-dimensional 
space, we conclude that there exists /z2>0 such that (--..~Fg, g)F>~ 
P_, IlgllF and then 

(--'~Ff, f ) F ~ 2  IIglIF--C []gllFl]f--P]f[lF (4.11) 

We also have 

(--~s f ) r > ~ ( - - L F f ,  f)F>~lll IIf - -e , f l lF  (4.12) 

Multiplying (4.12) by a constant large enough and adding (4.11), we end 
up with 

( --~'~Ff, f)F>~Ft[ I l f - P , f l l F +  IlgllF] 

which ends the proof in view of (4.10). II 

Let g ~ HF be given. Then, the equation s = g Propos i t ion  4.8. 
is solvable if and only if 

and f is unique in the space 

Proposition 4.9. 
(1, e)" and 

where ~ and ~g2 are the unique solutions in ( 1, e) • of 

�9 , ~ F ~ I  = - -  Vt.eF( 1 - -  qF) 

&~ = -- e VkeF( 1 - qF) 

Proof. We recall that 

~q'F(fl ) = Vke. V.,.F + V.,. V. VkF 

Equation (4.3) admits a unique solution f l  in 

(4.13) 
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Noting that 

and that e(k) is even, one can easily show that the solvability condition is 
satisfied. Also, we have 

Vke. V_,.F+ V,.V. V~F=[ V.~(T)-Y--~ . F(1-,IF) Vke 

- V ~  (1 ) .F (1 - - ,1F)eVke  

and then the form of f~ comes from the fact that s acts only on the k 
variable. | 

4.3.  O r d e r - a  ~ T e r m s  

Let us introduce the diffusion matrices 

Dtj= Is Ve(k) | 

D2j=fseVe(k)| j = l , 2  

We have 

D~'= - (~b~i, ~r0~ ' )  r (4.14) 

where ~ j =  (~'J)/~]._,.3, and therefore 

Dr=Dii (4.15) 

which is the Onsager relation. ~ 19) 

Proposition 4.10. Let f0 and f] be given in Propositions 4.4 and 
4.9, respectively. Then Eq. (4.7) is solvable if and only if/l(t, x) and T(t, x) 
satisfy the following diffusion system: 
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where 

O - - n ( l t ' T ) - V ' { D ~ I V " ( ~ ) - ~ - T - ~ + D ~ ' ~ }  " - - (4.16) 

Om ng~(lt" T)- V { D2~ [ V" (~) - ~ - ~  + D" -- 

+ V V . { D , , [  . (  ) - Y - ~ - ~ + D ~ ,  T,) V~ ~ _ ~ } =  W~(/t, T, _ (4.17) 

t "  

W~(:t, T, Tz.)=JB Q~(F)e dk (4.18) 

Proof. The solvability condition is 

2 D2Q,.(fo)(.fl, ./'l) dk = 0 

Now since for every f we have I �9 i Q,(./)(~) elk = 0, then differentiating twice 
at fo, we easily end up with 

which now implies that 

+ Vke. V.,.J'~ + V,. V. VkJ" ~ dk = Q~(fo) e(k) elk 

Since Jo = F/,. r and J] is given by Proposition 4.9, the left-hand side gives 
the desired terms by straightforward computations. II 

The following lemmas show, first, that W'(:t, T, TL) is a temperature 
relaxation term which relaxes to the lattice temperature, and, second, that 
system (4.16), (4.17) is a nondegenerate parabolic system. 

Lemma 4.11. We have 

W~(/t, T, TL) . ( T -  TL) <~ O 
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Lemma 4.12. Assume the six functions (O~e, O2e, O3e, eO~e, eO2e, eO3e) 
are linearly independent.  Then  the matr ix 

D = [  D, ,  D'2] 
D2| D22J 

is positive definite when T > O, - ov < It < + oz. 

Remark. The hypothesis  of  the above lemma is a geometric 
assumption on the band diagram and expresses that  it has a real three- 
dimensional structure, which is natural. The  hypothesis  excludes, for 
example, the case of  a band depending only on one or two space variables. 

Proof of Lemma 4.11. We can write 

f Q~(fo) e dk = 1__~ I I  ( 1 - qF)( 1 - qF')  r k ~ ) 
0(- 

Hence 

j QT(fo) dk 

X { [(Nph + 1 ) ,~(e -- e' + ~r "q- Nph6(e -- e' -- (X2eph) ] M 'e  

- [(Nph + 1 ) 5(e' - -e  + ~-'eoh ) 

+Nph0(e --e--0~'eph) ] Me} dk dk' 

l__; t" 
= J ( 1 - -qF)(  1 - q F ' )  q)ph(k, k ')  Or 

X [ 6(e --  e'  + 0r ) [ ( Nob + 1 ) M' --  Nph M] a 

+ 6(e -- e' -- ~2eoh ) [ Nph M '  

--  (Nph + 1 ) M](e '  + 0r ] dk'  dk  

= f f  eph( 1 - qF)( 1 - qF')  r k ')  6(e - e' - -  o~2eph ) 

X [ N p h M '  - (Nph + l ) M ]  dk dk' 

By noting that  

( N  O + 1 ) = No e~%'/rL and M '  = M e  a2~ph/r 
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we conclude 

( T -  TL) f QT(Jo) e dk = I~ eph(l - qF)(l - , I F ' )  r k') 

x fi(e-e'-~r NoM( T -  TL) 

x [e ~:~h/r- e ~2~p'/TL] dk dk' 

~o | 

Proof of Lemma 4. 12. Let us recall that 

D" . . . .  <<, ~,~y,>,~ 
O - -  

As a consequence of the linear independence of (eO~e, eO2e, eO3e, O~e, 
02e, 03e) we easily deduce from Proposition 4.9 that the family (~u~) is inde- 
pendent. Since ~b~ lies in a finite-dimensional subspace of (Ker ~r )  • we 
deduce that - - ~ r  is coercive on span(~U~). This means that there exists 
It > 0 such that 

--~r a j~ j ,  Y, ajOj >~, Y, (a,)- 
�9 k j ,  I / I F  

But the left-hand side of this inequality is exactly equal to A rDA, where A 
is the vector 

Hence 

which ends the proof, l 

A =(~ l ,  ~,L a",, a',, <,~, <,',_) T 

A TDA >i irA TA 

5. A H Y D R O D Y N A M I C  M O D E L  FOR DEGENERATE ELECTRON 
GAS IN A S E M I C O N D U C T O R  

The aim of this section is to show that the diffusion system (4.16), 
(4.17) can be rewritten as a hydrodynamic system in which some of the 
transport terms are neglected. We first begin by recalling the hydrodynamic 
system for a degenerate gas with an arbitrary kinetic energy relation e(k). 
For that purpose, we consider a Boltzmann equation (2.2) in which (for 
simplicity, we take r/= 1 ) 
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and 

such that 

dk=0,  I Q,,(f) in 1 _ ~  dk <~0 (5.1) 

Q,,(f)=O~.312eR, u e R  3, T > 0  (5.2) 

f = F ,  ..... r =(e'lk) .... k-, ,vr+ 1)-I 

This means that Qe(f) is of the form (2.7) where the umklapp collisions 
(g g:0) are disregarded. We also assume that R(p, u, T) and W(/~, u, T) are 
such that 

• Qta(F) ark = 
0) 

R(p, u, T) 

W(p, u, T) 

(5.3) 

Then we introduce the mean density n, momentum K, energy g, velocity u, 
pressure tensor P, and heat flux vector Q by 

=fItk, 
\ n ,~ J  e(k) 

dk (5.4) 

fnu = f f (k)  Vke(k ) dk 

IP = ~ (k - K) | (Vke(k) - u)f(k) dk (5.5) 

Q = f e(Vke -- u}f(k} dk 

Then, multiplying Eq. (2.2) by ( 1, k, e(k)) r and integrating over k leads to 
the following system: 

"On ~+V.(nu)=0 

O 
(nK) + V . ( n K |  P - n  VV= R (5.6) 

0 
( n g ) + V . ( n ~ u + Q ) - n u V V =  W 
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The closure relations obtained by taking f =  F/ ..... r give 

"~ = I"KI", TI~ =_, , ,  TIkl "~ 

ng \rig(It, u, T)// 

(5.7) 

f nu = J F~ ..... r(k) Vke dk 
C 

P=pld, p = - T f l n ( 1 - F ~  ..... r)dk 

Q =pu 

(5.8) 

Finally, let S, G be the entropy-entropy flux pair defined by 

I S = f [ F In F + ( 1 - F) In( 1 - F) ] dk 

G=f [ F i n  F +  (1 - F ) I n ( 1  - F ) ]  Vkedk 
(5.9) 

The entropy identity is given by 

1 
-~+ V. G = - ~ ( W - u . R )  (5.10) 

We now have the following result. 

Proposi t ion 5.1. System (4.16), (4.17) can be written 

I ~-~ + V- ( n u ) = 0  

Vp -n  VV= R 

l + Ot (ng) + V.(n~u) + V.(pu)-nu. VV+ V.q= W ~ 

(5.11) 

where 

n,d' = F,. o. r ( k )  dk (5.12) 
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p = - TJ ln(1 -Ft,,o" T) elk 
t" 

/ 

,/~ R= -(nTD~ I) nu-(nD~' D,2-(p +,,~))-~- (5.13) 

I 
i l VT ~q=(nD21D ~ - ( p + n g ) ) u - ( D 2 , _ - D 2 1 D  ~ Di2) ~__ 

and W ~ given by (4.18). 

R e m a r k  5.2. (5.11) is just (5.6) without the transport term 
~nK/at+V.(nK| in the momentum equation, which corresponds to 
neglecting all the terms in factor of the mass m (in physical units). There- 
fore, system (6.16), (6.17) can be viewed as a hydrodynamic model for an 
infinitely light particle. System (5.11) also provides a formula for the fric- 
tion force R. It is the sum of the momentum relaxation term - ( n T D  ~)nu,  
which gives rise to a tensor mobility 16, 

1 
/t,, = ~ D t l  (5.14) 

and a term proportional to the gradient of the electron temperature (the 
thermopower). Although this term is absent from most semiconductor 
models, it is present in plasma models, ~8' 12~ where it is referred to as the 
"thermal force." The total energy flux Q is now the sum of the work of the 
pressure force pu and the heat flux q. The heat flux q is itself the sum of 
two terms: The first one is a friction heat flux proportional to u. The coef- 
ficient of u is minus the transpose of the coefficient of VT/T in the thermal 
force, which is a form of Onsager's reciprocity relation. The second one is 
a thermal heat flux associated with a positive-definite tensor heat conduc- 
tivity 

1 
it" = ~__ (D22 - D21D ~l Dr2) (5.15) 

The application of symmetry groups associated with particular lattice 
geometries may reduce some of the above-defined tensors to scalars. This 
question will not be investigated here. 

Proof of Proposition 5.7. From (4.16) and the first equation of 
(5.1 1 ), it is clear that u should be defined by 

17t/= --DII V --'~-J-- 12 ~ (5.16) 
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o r  

n -(nTD~l) nu=nTV -~ -17 VV +-~D~l DI2 VT 

But, with p given by the first equation of (5.13), we have 

vp=V---~p+nTV(T)+n~ V 

Replacing V(It/T) by its value computed from (5.16) gives the second equa- 
tions of both (5.11) and (5.13). To get the third equation of (5.11) and 
(5.13), we just have to replace 

in the second term of (4.17) by its value deduced from (5.16). 
We now prove that the heat diffusivity tensor h- is positive definite. For 

this aim we recall that the matrix 

D=[ DI, D12] 
D21 D22J 

is positive definite. Then for every block vector 

(DZ, Z) >t2. (Z, Z)  ~>2(X, X) 

for some 2>0.  It is then easy to check that (DZ, Z) is nothing but 
( T'-KX, X). II 

6. THE NONDEGENERATE ELECTRON GAS WITH A 
PARABOLIC BAND STRUCTURE 

In this section, we take Pl-'* 0, B ~  •s, ~(k)=k'-/2, and we now 
replace k by v. We also suppose that the transition function ~e only 
depends on It , -  vt[ and on the scattering angle 0 and that ~o only depends 
on v.v~. Then, by straightforward computations ~t2~ we have the following 
result. 
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Proposition 6.1. The Hilbert expansion (4.1) is solvable for f2 if 
and only if 17 and T satisfy the following diffusion system: 

"0n ( ~ ,  )v)+(o,2 
~(~nT)-V'ID2|(Vn\n ~V) + (D2,_-~aTD2,)~_T~ (6.1) 

+ VV D,l \ i~ + Du--~ TDII ) = W ~ 

where 

{ Du=}(y lvl2 M,,.r~'j(Ivl)dv)Id 

D2j=~(f lvl4 M,,.r~i(Ivl)dv)Id 

M,,.T(V) - - - -  

~(Ivl), j =  1, 2, are solutions of 

(2roT) 3/2 
e--lcl2/2T 

(6.2) 

{ ~ M ( -  ~,(Ivl)  V)+ QO(- -~ ( Iv l )  V)= vM(v) 

LeM(--~2(Ivl) v)+ Qo(-~2(lvl) v) 12-" 
(6.3) 

= -  vM(v) 

and where 5~ is the linearized Boltzmann operator about M and 

W~(n, 7", TL)=j ~ Q~(M) dv (6.4) 

This system can also be put in the form of a hydrodynamic system, as 
follows. 

Proposition 6.2. System (6.1) is equivalent to 

I 0n ~-+ V. (nu) = 0 

t V(nT) VV= R (6.5) 

0 3 ~-~(~nT) W V.(~nTu)-nu. VF+ V.q= W ~ 

822/84/I-2-15 
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with 

IR nT / 1 D,, VT 

5 
Lq = ~,T--~II}//DI2 ~ n T u _ ( D 2 2 / \  D2IDI2~DI I J 

VT 
T2 

(6.6) 

Remark 6.3. The third equation of (6.5) is the usual energy equa- 
tion, while the second one is just the momentum equation in which the 
terms anu/Ot + V - ( n u |  have been removed. This corresponds to the 
removal of all the terms which have the mass in the factor. Therefore, 
system (6.1) can be viewed as a hydrodynamic system for a massless par- 
ticle. The significance of the terms appearing in R and q has been explained 
in Remark 5.2. Again, Onsager's reciprocity relation should be pointed out 
between the cross terms of R and q. Finally, an entropy identity for this 
system is given in ref. 12. 
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